43 research outputs found

    QED can explain the non-thermal emission from SGRs and AXPs : Variability

    Get PDF
    Owing to effects arising from quantum electrodynamics (QED), magnetohydrodynamical fast modes of sufficient strength will break down to form electron-positron pairs while traversing the magnetospheres of strongly magnetised neutron stars. The bulk of the energy of the fast mode fuels the development of an electron-positron fireball. However, a small, but potentially observable, fraction of the energy (1033\sim 10^{33} ergs) can generate a non-thermal distribution of electrons and positrons far from the star. This paper examines the cooling and radiative output of these particles. Small-scale waves may produce only the non-thermal emission. The properties of this non-thermal emission in the absence of a fireball match those of the quiescent, non-thermal radiation recently observed non-thermal emission from several anomalous X-ray pulsars and soft-gamma repeaters. Initial estimates of the emission as a function of angle indicate that the non-thermal emission should be beamed and therefore one would expect this emission to be pulsed as well. According to this model the pulsation of the non-thermal emission should be between 90 and 180 degrees out of phase from the thermal emission from the stellar surface.Comment: 7 pages, 5 figures, to appear in the proceedings of the conference "Isolated Neutron Stars: from the Interior to the Surface" (April 2006, London), eds. D. Page, R. Turolla, & S. Zane, Astrophysics & Space Scienc

    Light bending by nonlinear electrodynamics under strong electric and magnetic field

    Full text link
    We calculate the bending angles of light under the strong electric and magnetic fields by a charged black hole and a magnetized neutron star according to the nonlinear electrodynamics of Euler-Heisenberg interaction. The bending angle of light by the electric field of charged black hole is computed from geometric optics and a general formula is derived for light bending valid for any orientation of the magnetic dipole. The astronomical significance of the light bending by magnetic field of a neutron star is discussed.Comment: drastically revised with conclusion change, reference added, version to appear in JCA

    Is Vacuum Decay Significant in Ekpyrotic and Cyclic Models?

    Full text link
    It has recently been argued that bubble nucleation in ekpyrotic and cyclic cosmological scenarios can lead to unacceptable inhomogeneities unless certain constraints are satisfied. In this paper we show that this is not the case. We find that bubble nucleation is completely negligible in realistic models.Comment: 3 pages, 1 figure, minor revision

    QED and the High Polarization of the Thermal Radiation from Neutron Stars

    Get PDF
    The thermal emission of strongly magnetized neutron-star atmospheres is thought to be highly polarized. However, because of the different orientations of the magnetic field over the surface of the neutron star (NS), it is commonly assumed that the net observed polarization will be significantly reduced as the polarization from different regions will cancel each other. We show that the birefringence of the magnetized QED vacuum decouples the polarization modes in the magnetosphere; therefore, the direction of the polarization follows the direction of the magnetic field up to a large distance from the stellar surface. At this distance, the rays that leave the surface and are destined for our detectors pass through only a small solid angle; consequently, the polarization direction of the emission originating in different regions will tend to align together. The net observed polarization of the thermal radiation of NSs should therefore be very large. Measurement of this polarization will be the first direct evidence of the birefringence of the magnetized vacuum due to QED and a direct probe of behavior of the vacuum at magnetic fields of order of and above the critical QED field of 4.4 x 10 13 G. The large observable polarization will also help us learn more about the atmospheric properties of NSs.Comment: 6 pages, 2 figures, minor changes to reflect accepted versio

    Variational Approach to Hydrogen Atom in Uniform Magnetic Field of Arbitrary Strength

    Get PDF
    Extending the Feynman-Kleinert variational approach, we calculate the temperature-dependent effective classical potential governing the quantum statistics of a hydrogen atom in a uniform magnetic at all temperatures. The zero-temperature limit yields the binding energy of the electron which is quite accurate for all magnetic field strengths and exhibits, in particular, the correct logarithmic growth at large fields.Comment: Author Information under this http://www.physik.fu-berlin.de/~kleinert/institution.html Latest update of paper also at this http://www.physik.fu-berlin.de/~kleinert/30

    Differential rotation of nonlinear r-modes

    Full text link
    Differential rotation of r-modes is investigated within the nonlinear theory up to second order in the mode amplitude in the case of a slowly-rotating, Newtonian, barotropic, perfect-fluid star. We find a nonlinear extension of the linear r-mode, which represents differential rotation that produces large scale drifts of fluid elements along stellar latitudes. This solution includes a piece induced by first-order quantities and another one which is a pure second-order effect. Since the latter is stratified on cylinders, it cannot cancel differential rotation induced by first-order quantities, which is not stratified on cylinders. It is shown that, unlikely the situation in the linearized theory, r-modes do not preserve vorticity of fluid elements at second-order. It is also shown that the physical angular momentum and energy of the perturbation are, in general, different from the corresponding canonical quantities.Comment: 9 pages, revtex4; section III revised, comments added in Introduction and Conclusions, references updated; to appear in Phys. Rev.

    Evidence for a Binary Companion to the Central Compact Object 1E 1207.4-5209

    Get PDF
    Unique among neutron stars, 1E 1207.4-5209 is an X-ray pulsar with a spin period of 424 ms that contains at least two strong absorption features in its energy spectrum. This neutron star has been identified as a member of the radio-quiet compact central objects in supernova remnants. It has been found that 1E 1207.4-5209 is not spinning down monotonically suggesting that this neutron star undergoes strong, frequent glitches, contains a fall-back disk, or possess a binary companion. Here, we report on a sequence of seven XMM-Newton observations of 1E 1207.4-5209 performed during a 40 day window in June/July 2005. Due to unanticipated variance in the phase measurements beyond the statistical uncertainties, we could not identify a unique phase-coherent timing solution. The three most probable timing solutions give frequency time derivatives of +0.9, -2.6, and +1.6 X 10^(-12) Hz/s (listed in descending order of significance). We conclude that the local frequency derivative during our XMM-Newton observing campaign differs from the long-term spin-down rate by more than an order of magnitude, effectively ruling out glitch models for 1E 1207.4-5209. If the long-term spin frequency variations are caused by timing noise, the strength of the timing noise in 1E 1207.4-5209 is much stronger than in other pulsars with similar period derivatives. Therefore, it is highly unlikely that the spin variations are caused by the same physical process that causes timing noise in other isolated pulsars. The most plausible scenario for the observed spin irregularities is the presence of a binary companion to 1E 1207.4-5209. We identified a family of orbital solutions that are consistent with our phase-connected timing solution, archival frequency measurements, and constraints on the companions mass imposed by deep IR and optical observations.Comment: 8 pages, 4 figures. To be published in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface" (April 24-28, 2006) - eds. D. Page, R. Turolla & S. Zan

    Electromagnetic transitions of the helium atom in superstrong magnetic fields

    Full text link
    We investigate the electromagnetic transition probabilities for the helium atom embedded in a superstrong magnetic field taking into account the finite nuclear mass. We address the regime \gamma=100-10000 a.u. studying several excited states for each symmetry, i.e. for the magnetic quantum numbers 0,-1,-2,-3, positive and negative z parity and singlet and triplet symmetry. The oscillator strengths as a function of the magnetic field, and in particular the influence of the finite nuclear mass on the oscillator strengths are shown and analyzed.Comment: 10 pages, 8 figure

    QED Effective Action at Finite Temperature: Two-Loop Dominance

    Full text link
    We calculate the two-loop effective action of QED for arbitrary constant electromagnetic fields at finite temperature T in the limit of T much smaller than the electron mass. It is shown that in this regime the two-loop contribution always exceeds the influence of the one-loop part due to the thermal excitation of the internal photon. As an application, we study light propagation and photon splitting in the presence of a magnetic background field at low temperature. We furthermore discover a thermally induced contribution to pair production in electric fields.Comment: 34 pages, 4 figures, LaTe

    How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion, and curvature?

    Get PDF
    The coupling of the electromagnetic field to gravity is an age-old problem. Presently, there is a resurgence of interest in it, mainly for two reasons: (i) Experimental investigations are under way with ever increasing precision, be it in the laboratory or by observing outer space. (ii) One desires to test out alternatives to Einstein's gravitational theory, in particular those of a gauge-theoretical nature, like Einstein-Cartan theory or metric-affine gravity. A clean discussion requires a reflection on the foundations of electrodynamics. If one bases electrodynamics on the conservation laws of electric charge and magnetic flux, one finds Maxwell's equations expressed in terms of the excitation H=(D,H) and the field strength F=(E,B) without any intervention of the metric or the linear connection of spacetime. In other words, there is still no coupling to gravity. Only the constitutive law H= functional(F) mediates such a coupling. We discuss the different ways of how metric, nonmetricity, torsion, and curvature can come into play here. Along the way, we touch on non-local laws (Mashhoon), non-linear ones (Born-Infeld, Heisenberg-Euler, Plebanski), linear ones, including the Abelian axion (Ni), and find a method for deriving the metric from linear electrodynamics (Toupin, Schoenberg). Finally, we discuss possible non-minimal coupling schemes.Comment: Latex2e, 26 pages. Contribution to "Testing Relativistic Gravity in Space: Gyroscopes, Clocks, Interferometers ...", Proceedings of the 220th Heraeus-Seminar, 22 - 27 August 1999 in Bad Honnef, C. Laemmerzahl et al. (eds.). Springer, Berlin (2000) to be published (Revised version uses Springer Latex macros; Sec. 6 substantially rewritten; appendices removed; the list of references updated
    corecore